Loading…

Dispersion of unfractionated CO2-derived protein-rich microalgae (Chlorella sp. HS2) for ecofriendly polymer composite fabrication

This study investigates unfractionated protein-rich microalgae (Chlorella sp. HS2) (HS2) as a new CO2-derived biomass filler resource with which to develop an ecofriendly microalgae-based polymer composite. Unfractionated HS2 is mixed with poly(ethylene-vinyl acetate) (EVA) over wide range of concen...

Full description

Saved in:
Bibliographic Details
Published in:Materials today communications 2022-06, Vol.31, p.103769, Article 103769
Main Authors: Yang, Jin Hoon, Hong, Joung Sook, Lee, Jeong Seop, Sim, Sang Jun, Ahn, Kyung Hyun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study investigates unfractionated protein-rich microalgae (Chlorella sp. HS2) (HS2) as a new CO2-derived biomass filler resource with which to develop an ecofriendly microalgae-based polymer composite. Unfractionated HS2 is mixed with poly(ethylene-vinyl acetate) (EVA) over wide range of concentrations ranging from 10 to 70 wt%. The dispersion of HS2 is analyzed based on morphological, rheological and mechanical measurements. Protein-rich HS2 has hydrophilic-hydrophobic surface due to the existence of chemical functional groups (CO, N-H) caused by high protein content (51% protein), predicting compatibility with EVA with polar functional (CO). Due to this compatibility, with 10–30 wt% of HS2, the composite shows a homogeneous micrometer-scale dispersion of HS2 in the EVA matrix (avg. diameter (Davg) ~ 7 µm). The composite maintains the dispersion of the HS2 without significant coalescence or network formation up to 50 wt% of HS2 (Davg ~ 10 µm). Correspondingly, the storage modulus (G′ at 0.1 rad/s) of the composite increases linearly until the HS2 content reaches 40 wt%, after which it increases exponentially with an increase in the HS2 content. An EVA composite with 10–20 wt% HS2 shows increased ductility (from 1700% to 2000% elongation at break with 10 wt% HS2) without a decrease in the tensile strength due to the homogeneous dispersion. Even with higher concentration of HS2, the composite maintains its ductile behavior and retains its synergistic effect with EVA (~ 500% elongation at break with 70 wt% HS2). The compatibility of HS2 with EVA and their hydrophilic surface delay agglomeration or percolation formation of HS2 cells in a polymer. This study suggests that protein-rich HS2 is a promising biomass filler that disperses in a polymer to the micrometer scale without additional chemical treatment. [Display omitted]
ISSN:2352-4928
2352-4928
DOI:10.1016/j.mtcomm.2022.103769