Loading…
Alternating proximal algorithms for linearly constrained variational inequalities: Application to domain decomposition for PDE’s
Let X , Y , Z be real Hilbert spaces, let f : X → R ∪ { + ∞ } , g : Y → R ∪ { + ∞ } be closed convex functions and let A : X → Z , B : Y → Z be linear continuous operators. Let us consider the constrained minimization problem ( P ) min { f ( x ) + g ( y ) : A x = B y } . Given a sequence ( γ n ) whi...
Saved in:
Published in: | Nonlinear analysis 2011-12, Vol.74 (18), p.7455-7473 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let
X
,
Y
,
Z
be real Hilbert spaces, let
f
:
X
→
R
∪
{
+
∞
}
,
g
:
Y
→
R
∪
{
+
∞
}
be closed convex functions and let
A
:
X
→
Z
,
B
:
Y
→
Z
be linear continuous operators. Let us consider the constrained minimization problem
(
P
)
min
{
f
(
x
)
+
g
(
y
)
:
A
x
=
B
y
}
.
Given a sequence
(
γ
n
)
which tends toward
0
as
n
→
+
∞
, we study the following alternating proximal algorithm
(
A
)
{
x
n
+
1
=
argmin
{
γ
n
+
1
f
(
ζ
)
+
1
2
‖
A
ζ
−
B
y
n
‖
Z
2
+
α
2
‖
ζ
−
x
n
‖
X
2
;
ζ
∈
X
}
y
n
+
1
=
argmin
{
γ
n
+
1
g
(
η
)
+
1
2
‖
A
x
n
+
1
−
B
η
‖
Z
2
+
ν
2
‖
η
−
y
n
‖
Y
2
;
η
∈
Y
}
,
where
α
and
ν
are positive parameters. It is shown that if the sequence
(
γ
n
)
tends
moderately slowly toward
0
, then the iterates of
(
A
)
weakly converge toward a solution of
(
P
)
. The study is extended to the setting of maximal monotone operators, for which a general ergodic convergence result is obtained. Applications are given in the area of domain decomposition for PDE’s. |
---|---|
ISSN: | 0362-546X 1873-5215 |
DOI: | 10.1016/j.na.2011.07.066 |