Loading…
Well-posedness for the Navier–Stokes equations with data in homogeneous Sobolev–Lorentz spaces
In this paper, we study local well-posedness for the Navier–Stokes equations (NSE) with arbitrary initial data in homogeneous Sobolev–Lorentz spaces ḢLq,rs(Rd):=(−Δ)−s/2Lq,r for d≥2,q>1,s≥0, 1≤r≤∞, and dq−1≤sd,r=q,s=0 (see Cannone (1995), Cannone and Meyer (1995)), for q=r=2,d2−1...
Saved in:
Published in: | Nonlinear analysis 2017-01, Vol.149, p.130-145 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we study local well-posedness for the Navier–Stokes equations (NSE) with arbitrary initial data in homogeneous Sobolev–Lorentz spaces ḢLq,rs(Rd):=(−Δ)−s/2Lq,r for d≥2,q>1,s≥0, 1≤r≤∞, and dq−1≤sd,r=q,s=0 (see Cannone (1995), Cannone and Meyer (1995)), for q=r=2,d2−1 |
---|---|
ISSN: | 0362-546X 1873-5215 |
DOI: | 10.1016/j.na.2016.10.015 |