Loading…
Short-term time series prediction using Hilbert space embeddings of autoregressive processes
Linear autoregressive models serve as basic representations of discrete time stochastic processes. Different attempts have been made to provide non-linear versions of the basic autoregressive process, including different versions based on kernel methods. Motivated by the powerful framework of Hilber...
Saved in:
Published in: | Neurocomputing (Amsterdam) 2017-11, Vol.266, p.595-605 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Linear autoregressive models serve as basic representations of discrete time stochastic processes. Different attempts have been made to provide non-linear versions of the basic autoregressive process, including different versions based on kernel methods. Motivated by the powerful framework of Hilbert space embeddings of distributions, in this paper we apply this methodology for the kernel embedding of an autoregressive process of order p. By doing so, we provide a non-linear version of an autoregressive process, that shows increased performance over the linear model in highly complex time series. We use the method proposed for one-step ahead forecasting of different time-series, and compare its performance against other non-linear methods. |
---|---|
ISSN: | 0925-2312 1872-8286 |
DOI: | 10.1016/j.neucom.2017.05.067 |