Loading…
Textual sentiment analysis via three different attention convolutional neural networks and cross-modality consistent regression
Word embeddings and CNN (convolutional neural networks) architecture are crucial ingredients of sentiment analysis. However, sentiment and lexicon embeddings are rarely used and CNN is incompetent to capture global features of sentence. To this end, semantic embeddings, sentiment embeddings and lexi...
Saved in:
Published in: | Neurocomputing (Amsterdam) 2018-01, Vol.275, p.1407-1415 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Word embeddings and CNN (convolutional neural networks) architecture are crucial ingredients of sentiment analysis. However, sentiment and lexicon embeddings are rarely used and CNN is incompetent to capture global features of sentence. To this end, semantic embeddings, sentiment embeddings and lexicon embeddings are applied for texts encoding, and three different attentions including attention vector, LSTM (long short term memory) attention and attentive pooling are integrated with CNN model in this paper. Additionally, a word and its context are explored to disambiguate the meaning of the word for rich input representation. To improve the performance of three different attention CNN models, CCR (cross-modality consistent regression) and transfer learning are presented. It is worth noticing that CCR and transfer learning are used in textual sentiment analysis for the first time. Finally, some experiments on two different datasets demonstrate that the proposed attention CNN models achieve the best or the next-best results against the existing state-of-the-art models. |
---|---|
ISSN: | 0925-2312 1872-8286 |
DOI: | 10.1016/j.neucom.2017.09.080 |