Loading…
Generalizing expectation propagation with mixtures of exponential family distributions and an application to Bayesian logistic regression
Expectation propagation (EP) is a widely used deterministic approximate inference algorithm in Bayesian machine learning. Traditional EP approximates an intractable posterior distribution through a set of local approximations which are updated iteratively. In this paper, we propose a generalized ver...
Saved in:
Published in: | Neurocomputing (Amsterdam) 2019-04, Vol.337, p.180-190 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Expectation propagation (EP) is a widely used deterministic approximate inference algorithm in Bayesian machine learning. Traditional EP approximates an intractable posterior distribution through a set of local approximations which are updated iteratively. In this paper, we propose a generalized version of EP called generalized EP (GEP), which is a new method based on the minimization of KL divergence for approximate inference. However, when the variance of the gradient is large, the algorithm may need a long time to converge. We use control variates and develop a variance reduced version of this method called GEP-CV. We evaluate our approach on Bayesian logistic regression, which provides faster convergence and better performance than other state-of-the-art approaches. |
---|---|
ISSN: | 0925-2312 1872-8286 |
DOI: | 10.1016/j.neucom.2019.01.065 |