Loading…

Multi-task learning for aspect term extraction and aspect sentiment classification

Aspect sentiment classification has a dependency over the aspect term extraction. The majority of the existing studies tackle these two problems independently, i.e., while performing aspect sentiment classification, it is assumed that the aspect terms are pre-identified. However, such assumptions ar...

Full description

Saved in:
Bibliographic Details
Published in:Neurocomputing (Amsterdam) 2020-07, Vol.398, p.247-256
Main Authors: Akhtar, Md Shad, Garg, Tarun, Ekbal, Asif
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Aspect sentiment classification has a dependency over the aspect term extraction. The majority of the existing studies tackle these two problems independently, i.e., while performing aspect sentiment classification, it is assumed that the aspect terms are pre-identified. However, such assumptions are neither practical nor appropriate. In this paper, we address these impractical limitations and propose a multi-task learning framework for the identification and classification of aspect terms in a unified model. At first, the proposed approach employs a BiLSTM followed by a self-attention mechanism to identify the aspect terms in a given sentence. Subsequently, the architecture utilizes a CNN framework to predict the sentiments of the identified aspect terms. We evaluate our proposed approach for the three benchmark datasets across two languages, i.e., English and Hindi. Experimental results suggest that the proposed multi-task model achieves competitive performance with reduced complexity (i.e., a single model for the two tasks compared to two separate models for each task) for both the languages.
ISSN:0925-2312
1872-8286
DOI:10.1016/j.neucom.2020.02.093