Loading…
Hyper-parameter tuning of physics-informed neural networks: Application to Helmholtz problems
We consider physics-informed neural networks (PINNs) (Raissiet al., 2019) for forward physical problems. In order to find optimal PINNs configuration, we introduce a hyper-parameter optimization (HPO) procedure via Gaussian processes-based Bayesian optimization. We apply the HPO to Helmholtz equatio...
Saved in:
Published in: | Neurocomputing (Amsterdam) 2023-12, Vol.561, p.126826, Article 126826 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider physics-informed neural networks (PINNs) (Raissiet al., 2019) for forward physical problems. In order to find optimal PINNs configuration, we introduce a hyper-parameter optimization (HPO) procedure via Gaussian processes-based Bayesian optimization. We apply the HPO to Helmholtz equation for bounded domains and conduct a thorough study, focusing on: (i) performance, (ii) the collocation points density r and (iii) the frequency κ, confirming the applicability and necessity of the method. Numerical experiments are performed in two and three dimensions, including comparison to finite element methods. |
---|---|
ISSN: | 0925-2312 |
DOI: | 10.1016/j.neucom.2023.126826 |