Loading…

Tritium discrimination using cluster size information from a DGEM detector

Measurement of tritium-in-air concentrations is complicated by the presence of gamma radiation, 14C, and noble gas radionuclides. In most cases the signal from tritium, in conventional ion chamber-based monitors, is much smaller than that from equal concentrations of interfering radioactive gases. T...

Full description

Saved in:
Bibliographic Details
Published in:Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment Accelerators, spectrometers, detectors and associated equipment, 2005-02, Vol.539 (1), p.433-440
Main Authors: Surette, R.A., Dubeau, J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Measurement of tritium-in-air concentrations is complicated by the presence of gamma radiation, 14C, and noble gas radionuclides. In most cases the signal from tritium, in conventional ion chamber-based monitors, is much smaller than that from equal concentrations of interfering radioactive gases. The lack of discrimination between tritium and other radioactive interferences frequently results in an overestimation of the tritium hazard. This report describes a method to effectively discriminate between tritium and other interfering airborne radioactive gases using ionization cluster size information from a double gas electron multiplier (DGEM) and a suitable readout array. The readout array consists of 121 pads (an 11×11 matrix of 4×4 mm pads on 6 mm centres) on a printed circuit board, each connected to a charge sensitive amplifier. The prototype-automated discriminating monitor typically indicated a spillover fraction, in the tritium channel, in the order of ±5% for binary mixtures of tritium and 14C, 85Kr, 133Xe or 41Ar. A custom-made dynamic cluster-fitting algorithm gives results in real-time with very good accuracy under extreme conditions.
ISSN:0168-9002
1872-9576
DOI:10.1016/j.nima.2004.09.039