Loading…
The materials science beamline at the Swiss Light Source: design and realization
The Materials Science Beamline at the Swiss Light Source (SLS) has been designed to produce hard X-rays in the photon-energy range 5–40 keV, at an intermediate energy (2.4 GeV) synchrotron. To this end, it employs a novel “minigap wiggler”. Important issues in the design and realization of the beaml...
Saved in:
Published in: | Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment Accelerators, spectrometers, detectors and associated equipment, 2005-03, Vol.540 (1), p.42-67 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Materials Science Beamline at the Swiss Light Source (SLS) has been designed to produce hard X-rays in the photon-energy range 5–40
keV, at an intermediate energy (2.4
GeV) synchrotron. To this end, it employs a novel “minigap wiggler”. Important issues in the design and realization of the beamline are the high heat load, robust system design, flexibility of operation and user-friendliness. A conventional collimating-mirror/sagittally focusing double-crystal monochromator/focusing mirror optics has been chosen with approximately 1:1 symmetry. Established component designs have been used wherever possible. Three serial end-stations are served with X-rays. Besides the minigap wiggler, other novel or unusual features are: continuous “top-up” injection in the SLS storage-ring, a rotating carbon “cup” filter in the beamline front-end, angles and bending radii of the optics mirrors which are adjusted at each change in photon-energy and special experimental-station equipment including high-speed one- and two-dimensional semiconductor detectors for powder and surface diffraction and a two-dimensional “Bragg magnifier” for tomography. In this work, a comparison is made between predicted and measured beamline properties, and Appendices with useful formulae and algorithms are provided. |
---|---|
ISSN: | 0168-9002 1872-9576 |
DOI: | 10.1016/j.nima.2004.11.018 |