Loading…

Increasing the detection sensitivity of the Radionuclide Aerosol Sampler/Analyzer using a cosmic veto system

Different configurations of a cosmic veto system have been evaluated for the Radionuclide Aerosol Sampler/Analyzer (RASA). The upgrade has the potential to resolve the issue that U.S. International Monitoring System (IMS) radionuclide stations have difficulty meeting the 140Ba Minimum Detectable Con...

Full description

Saved in:
Bibliographic Details
Published in:Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment Accelerators, spectrometers, detectors and associated equipment, 2019-11, Vol.944, p.162473, Article 162473
Main Author: Burnett, Jonathan L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Different configurations of a cosmic veto system have been evaluated for the Radionuclide Aerosol Sampler/Analyzer (RASA). The upgrade has the potential to resolve the issue that U.S. International Monitoring System (IMS) radionuclide stations have difficulty meeting the 140Ba Minimum Detectable Concentration (MDC) certification requirement when the natural background radioactivity is high. It also aims to improve the detection sensitivity of the RASA system for other fission and activation products indicative of a nuclear explosion. This proof of principal utilizes a prototype RASA system located at Pacific Northwest National Laboratory (PNNL), and has demonstrated background reductions by up to 11.3% and improvements in the average MDC by up to 7.7%. Recommendations are made for either a 1 or 3 plate configuration, which improves the 140Ba MDC by 5.6% and 7.2% for a blank filter. Whilst elevated 212Pb activity remains problematic, the cosmic veto system provides a practical solution for sensitivity improvement with little design modification of the RASA. It also has value in improving sensitivity and preventing false-positives at remote U.S. IMS station locations where sample transfer for laboratory analysis is logistically difficult.
ISSN:0168-9002
1872-9576
DOI:10.1016/j.nima.2019.162473