Loading…
A quasi-non-invasive ultra-thin luminophore foil detector system for secondary beam monitoring
High-intensity secondary beams play a vital role in today’s particle physics and materials science research and require suitable detection techniques to adjust beam characteristics to optimally match experimental conditions. To this end we have developed a quasi-non-invasive, ultra-thin, CsI(Tl) lum...
Saved in:
Published in: | Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment Accelerators, spectrometers, detectors and associated equipment, 2020-03, Vol.955, p.163298, Article 163298 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | High-intensity secondary beams play a vital role in today’s particle physics and materials science research and require suitable detection techniques to adjust beam characteristics to optimally match experimental conditions. To this end we have developed a quasi-non-invasive, ultra-thin, CsI(Tl) luminophore foil detector system, based on CCD-imaging. We have used this to quantify the beam characteristics of an intensity-frontier surface muon beam used for next-generation charged lepton-flavour violation (cLFV) search experiments at the Paul Scherrer Institut (PSI) and to assess the possible use for a future High-intensity Muon Beam (HiMB-project), currently under study at PSI. An overview of the production and intrinsic characteristics of such foils is given and their application in a high-intensity beam environment. |
---|---|
ISSN: | 0168-9002 1872-9576 |
DOI: | 10.1016/j.nima.2019.163298 |