Loading…

Extremal solutions to fourth-order functional boundary value problems including multipoint conditions

This paper concerns the fully fourth-order nonlinear functional equation (E) − d d t ( ϕ ∘ u ‴ ) ( t ) = f ( t , u ″ ( t ) , u ‴ ( t ) , u , u ′ , u ″ ) , for a.a.  t ∈ I = [ a , b ] , with the functional boundary conditions (BC) B 1 ( u ( b ) , u , u ′ , u ″ ) = 0 = B 2 ( u ′ ( b ) , u , u ′ , u ″...

Full description

Saved in:
Bibliographic Details
Published in:Nonlinear analysis: real world applications 2009-08, Vol.10 (4), p.2157-2170
Main Authors: Cabada, Alberto, Pouso, Rodrigo López, Minhós, Feliz M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper concerns the fully fourth-order nonlinear functional equation (E) − d d t ( ϕ ∘ u ‴ ) ( t ) = f ( t , u ″ ( t ) , u ‴ ( t ) , u , u ′ , u ″ ) , for a.a.  t ∈ I = [ a , b ] , with the functional boundary conditions (BC) B 1 ( u ( b ) , u , u ′ , u ″ ) = 0 = B 2 ( u ′ ( b ) , u , u ′ , u ″ ) , B 3 ( u ″ ( a ) , u ″ ( b ) , u ‴ ( a ) , u ‴ ( b ) , u , u ′ , u ″ ) = 0 = L 2 ( u ″ ( a ) , u ″ ( b ) ) , where ϕ : R ⟶ R is an increasing homeomorphism, f : I × R 2 × ( C ( I ) ) 3 ⟶ R , B i , i = 1 , 2 , 3 , and L 2 are suitable functions. The existence of extremal solutions for problem (E)-(BC) is proved by defining a convenient partial ordering. Some sufficient conditions to obtain lower and upper solutions are given.
ISSN:1468-1218
1878-5719
DOI:10.1016/j.nonrwa.2008.03.026