Loading…
Nodal solutions for the nonlinear Robin problem in Orlicz spaces
In this paper we consider a non-linear Robin problem driven by the Orlicz g-Laplacian operator. Using variational technique combined with a suitable truncation and Morse theory (critical groups), we prove two multiplicity theorems with sign information for all the solutions. In the first theorem, we...
Saved in:
Published in: | Nonlinear analysis: real world applications 2025-02, Vol.81, p.104186, Article 104186 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper we consider a non-linear Robin problem driven by the Orlicz g-Laplacian operator. Using variational technique combined with a suitable truncation and Morse theory (critical groups), we prove two multiplicity theorems with sign information for all the solutions. In the first theorem, we establish the existence of at least two non-trivial solutions with fixed sign. In the second, we prove the existence of at least three non-trivial solutions with sign information (one positive, one negative, and the other change sign) and order. The result of the nodal solution is new for the non-linear g-Laplacian problems with the Robin boundary condition. |
---|---|
ISSN: | 1468-1218 |
DOI: | 10.1016/j.nonrwa.2024.104186 |