Loading…

Self-consistency and search for collective effects in semiclassical pairing theory

A simple model, in which nuclei are represented as homogeneous spheres of symmetric nuclear matter, is used to study the effects of a self-consistent pairing interaction on the isoscalar nuclear response. Effects due to the finite size of nuclei are suitably taken into account. The semiclassical equ...

Full description

Saved in:
Bibliographic Details
Published in:Nuclear physics. A 2011-08, Vol.864 (1), p.38-62
Main Authors: Abrosimov, V.I., Brink, D.M., Dellafiore, A., Matera, F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A simple model, in which nuclei are represented as homogeneous spheres of symmetric nuclear matter, is used to study the effects of a self-consistent pairing interaction on the isoscalar nuclear response. Effects due to the finite size of nuclei are suitably taken into account. The semiclassical equations of motion derived in a previous paper for the time-dependent Hartree–Fock–Bogoliubov problem are solved in an improved (linear) approximation in which the pairing field is allowed to oscillate and to become complex. The new solutions are in good agreement with the old ones and also with the result of well-known quantum approaches. The role of the Pauli principle in eliminating one possible set of solutions is also discussed. The density response function is explicitly evaluated and it is shown that the energy-weighted sum rule is restored to its correct value by a part of the fluctuations of the imaginary pairing field. The remaining part of these imaginary fluctuations, together with the fluctuations of the real part, could give rise to collective excitations in the density response function. A detailed analysis of the monopole and quadrupole strength functions shows that there are practically no collective effects in these channels at low excitation energy.
ISSN:0375-9474
DOI:10.1016/j.nuclphysa.2011.06.020