Loading…
Reducible gauge algebra of BRST-invariant constraints
We show that it is possible to formulate the most general first-class gauge algebra of the operator formalism by only using BRST-invariant constraints. In particular, we extend a previous construction for irreducible gauge algebras to the reducible case. The gauge algebra induces two nilpotent, Gras...
Saved in:
Published in: | Nuclear physics. B 2007-06, Vol.771 (3), p.190-233 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We show that it is possible to formulate the most general first-class gauge algebra of the operator formalism by only using BRST-invariant constraints. In particular, we extend a previous construction for irreducible gauge algebras to the reducible case. The gauge algebra induces two nilpotent, Grassmann-odd, mutually anti-commuting BRST operators that bear structural similarities with BRST/anti-BRST theories but with shifted ghost number assignments. In both cases we show how the extended BRST algebra can be encoded into an operator master equation. A unitarizing Hamiltonian that respects the two BRST symmetries is constructed with the help of a gauge-fixing boson. Abelian reducible theories are shown explicitly in full detail, while non-Abelian theories are worked out for the lowest reducibility stages and ghost momentum ranks. |
---|---|
ISSN: | 0550-3213 1873-1562 |
DOI: | 10.1016/j.nuclphysb.2007.02.013 |