Loading…

On rotor hub design for shrouded hydrokinetic turbines

The effect of hub length and axial location on the performance of shrouded hydrokinetic turbines has been investigated using axisymmetric actuator disk simulations. Five systems with different hubs (or without a hub, for reference) are considered with a common shroud design. Flow separation on the h...

Full description

Saved in:
Bibliographic Details
Published in:Ocean engineering 2021-11, Vol.240, p.109940, Article 109940
Main Authors: Limacher, Eric J., Rezek, Thiago J., Ramirez Camacho, Ramiro G., Vaz, Jerson R.P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The effect of hub length and axial location on the performance of shrouded hydrokinetic turbines has been investigated using axisymmetric actuator disk simulations. Five systems with different hubs (or without a hub, for reference) are considered with a common shroud design. Flow separation on the hub was found to be detrimental to performance, and to be sensitive to rotor loading, leading to unacceptable off-design performance. When the thrust coefficient, CT, is below the optimal value of 8/9, increasing CT promotes flow separation on the central hub; continued increases beyond this value facilitate reattachment. Flow separation on the hub was avoided altogether when most of the hub was placed upstream of the rotor plane—contrary to the convention for unshrouded turbines—where the shroud geometry lends a favorable pressure gradient. This latter design achieved performance in close agreement with the open-centered design, which is recommended when feasible to avoid the risks of hub-flow separation. With a central hole diameter of 0.228D, where D is the rotor diameter, a penalty of
ISSN:0029-8018
1873-5258
DOI:10.1016/j.oceaneng.2021.109940