Loading…
Integrating prior domain knowledge into discriminative learning using automatic model construction and phantom examples
Domain knowledge captures an expert's approximate understanding of the world, its objects, and their properties. When available, it should serve to augment the information in a classification learner's training set. But this form of prior knowledge does not easily fit into the statistical...
Saved in:
Published in: | Pattern recognition 2009-12, Vol.42 (12), p.3231-3240 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Domain knowledge captures an expert's approximate understanding of the world, its objects, and their properties. When available, it should serve to augment the information in a classification learner's training set. But this form of prior knowledge does not easily fit into the statistical learning paradigm. We propose and evaluate the use of phantom examples to remedy this. Our system performs automated model construction and learns generative models for phantom examples that adapt to the need of individual tasks. The approach is validated on the challenging real-world task of distinguishing handwritten Chinese characters. The approach improves learning significantly, provides additional robustness, and works well even though the domain knowledge is imperfect and approximate. |
---|---|
ISSN: | 0031-3203 1873-5142 |
DOI: | 10.1016/j.patcog.2008.12.012 |