Loading…
2.5-Dimensional modeling of EM logging-while-drilling tool in anisotropic medium on a Lebedev grid
A 2.5D finite-difference (FD) algorithm for the modeling of the electromagnetic (EM) logging-while-drilling (LWD) tool in anisotropic media is presented. The FD algorithm is based on the Lebedev grid, which allows for the discretization of the frequency-domain Maxwell's equations in the anisotr...
Saved in:
Published in: | Petroleum science 2023-02, Vol.20 (1), p.249-260 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A 2.5D finite-difference (FD) algorithm for the modeling of the electromagnetic (EM) logging-while-drilling (LWD) tool in anisotropic media is presented. The FD algorithm is based on the Lebedev grid, which allows for the discretization of the frequency-domain Maxwell's equations in the anisotropic media in 2.5D scenarios without interpolation. This leads to a system of linear equations that is solved using the multifrontal direct solver which enables the simulation of multi-sources at nearly the cost of simulating a single source for each frequency. In addition, near-optimal quadrature derived from an optimized integration path in the complex plane is employed to implement the fast inverse Fourier Transform (IFT). The algorithm is then validated by both analytic and 3D solutions. Numerical results show that two Lebedev subgrid sets are sufficient for TI medium, which is common in geosteering environments. The number of quadrature points is greatly reduced by using the near-optimal quadrature method. |
---|---|
ISSN: | 1995-8226 1995-8226 |
DOI: | 10.1016/j.petsci.2022.09.010 |