Loading…
Inhaled efficacious dose translation from rodent to human: A retrospective analysis of clinical standards for respiratory diseases
Clinical pharmacologists and toxicologists are often faced with predicting equivalent dosages for humans from biological observations in laboratory animals. Allometric scaling has been used extensively as the basis for extrapolation of drug dosage that might be expected to produce the equivalent bio...
Saved in:
Published in: | Pharmacology & therapeutics (Oxford) 2017-10, Vol.178, p.141-147 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Clinical pharmacologists and toxicologists are often faced with predicting equivalent dosages for humans from biological observations in laboratory animals. Allometric scaling has been used extensively as the basis for extrapolation of drug dosage that might be expected to produce the equivalent biological effects. Allometry is the study of size and its consequences and it is based on the anatomical, physiological, and biochemical similarities between animals. In this review, retrospective analyses have been performed based on data reported in the literature in an attempt to determine the utility of allometric scaling for human dose projections from pre-clinical data for compounds that are delivered by inhalation. The limited pre-clinical efficacy data available on inhaled drugs that are also used clinically supports the current method of scaling using a fixed allometric exponent of 0.67. An example of the utility of the human inhaled dose projections for planning inhaled toxicology studies is also presented. |
---|---|
ISSN: | 0163-7258 1879-016X |
DOI: | 10.1016/j.pharmthera.2017.04.003 |