Loading…

An Experiment in Synchronicity

Click here and insert your abstract text. Possible states theory generalizes about the process of change within a finite and discrete model of the universe. The possible states consist of all interactions between objects, including past, future and possible interactions. The theory posits a non-elec...

Full description

Saved in:
Bibliographic Details
Published in:Physics procedia 2011, Vol.20, p.212-221
Main Authors: Thomson, S., Dunseath, W.J.R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Click here and insert your abstract text. Possible states theory generalizes about the process of change within a finite and discrete model of the universe. The possible states consist of all interactions between objects, including past, future and possible interactions. The theory posits a non-electromagnetic model of change in which change propagates without reference to space-time. The theory delivers verifiable predictions and is generally consistent with quantum theory. It offers the prospect of nonlocal connections between objects and change that is not constrained by conservation laws. The value of the concept as a basis for technology development depends upon the ability to manipulate the possible states, specifically to produce coherence in selected collections of states. An experiment is devised in which a coherent state path is created between the experimental components and loaded through interaction with non-coherent states. Discharge of coherence results in a burst of synchronistic events compatible with theoretical expectations. The experiment validates a specific control strategy and yields a large timewise anomaly. The results shed light on a potential sentient intelligence and upon the development of coherence in the possible states and enable a major advance in the control of change.
ISSN:1875-3892
1875-3892
DOI:10.1016/j.phpro.2011.08.020