Loading…
Line graph neural networks for link weight prediction
In real-world networks, predicting the weight (strength) of links is as crucial as predicting the existence of the links themselves. Previous studies have primarily used shallow graph features for link weight prediction, limiting the prediction performance. In this paper, we propose a new link weigh...
Saved in:
Published in: | Physica A 2025-03, Vol.661, p.130406, Article 130406 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In real-world networks, predicting the weight (strength) of links is as crucial as predicting the existence of the links themselves. Previous studies have primarily used shallow graph features for link weight prediction, limiting the prediction performance. In this paper, we propose a new link weight prediction method, namely Line Graph Neural Networks for Link Weight Prediction (LGLWP), which learns intrinsic graph features through deep learning. In our method, we first extract the enclosing subgraph around a target link and then employ a weighted graph labeling algorithm to label the subgraph nodes. Next, we transform the subgraph into the line graph and apply graph convolutional neural networks to learn the node embeddings in the line graph, which can represent the links in the original subgraph. Finally, the node embeddings are fed into a fully-connected neural network to predict the weight of the target link, treated as a regression problem. Our method directly learns link features, surpassing previous methods that splice node features for link weight prediction. Experimental results on six network datasets of various sizes and types demonstrate that our method outperforms state-of-the-art methods.
•Line graph neural networks are proposed for link weight prediction.•Enclosing subgraphs play a critical role in link weight prediction.•Our model achieves state-of-the-art performance in link weight prediction. |
---|---|
ISSN: | 0378-4371 |
DOI: | 10.1016/j.physa.2025.130406 |