Loading…
Stability of plane-wave solutions of a dissipative generalization of the nonlinear Schrödinger equation
The modulational instability of perturbed plane-wave solutions of the cubic nonlinear Schrödinger (NLS) equation is examined in the presence of three forms of dissipation. We present two families of decreasing-in-magnitude plane-wave solutions to this dissipative NLS equation. We establish that all...
Saved in:
Published in: | Physica. D 2008-12, Vol.237 (24), p.3292-3296 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The modulational instability of perturbed plane-wave solutions of the cubic nonlinear Schrödinger (NLS) equation is examined in the presence of three forms of dissipation. We present two families of decreasing-in-magnitude plane-wave solutions to this dissipative NLS equation. We establish that all such solutions that have no spatial dependence are linearly stable, though some perturbations may grow a finite amount. Further, we establish that all such solutions that have spatial dependence are linearly unstable if a certain form of dissipation is present. |
---|---|
ISSN: | 0167-2789 1872-8022 |
DOI: | 10.1016/j.physd.2008.07.016 |