Loading…

Linear instability and weakly nonlinear effects in eastward dipoles

The linear instability and weakly nonlinear dynamics of eastward-propagating, steady-state Larichev–Reznik vortex dipoles are explored in terms of two-dimensional normal-mode analysis. To extract the fastest growing normal modes, we apply both breeding methodology based on solving the initial-value...

Full description

Saved in:
Bibliographic Details
Published in:Physica. D 2024-04, Vol.460, p.134068, Article 134068
Main Authors: Davies, J., Shevchenko, I., Berloff, P., Sutyrin, G.G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The linear instability and weakly nonlinear dynamics of eastward-propagating, steady-state Larichev–Reznik vortex dipoles are explored in terms of two-dimensional normal-mode analysis. To extract the fastest growing normal modes, we apply both breeding methodology based on solving the initial-value problem, as well as a direct-solution approach through the full-spectrum eigenproblem involving large matrices. We find that the amplification rate of dipole instability decreases with respect to increase in dipole intensity. In our study, both approaches yield consistent results and are systematically compared to provide guidance for further studies of vortex structures. We consider nonlinear self-interaction of the fastest growing mode, along with the induced eddy fluxes, their divergence and mechanical energy balance. Through this analysis, we find that the unstable mode leads to weakening of the dipole by extracting its energy and exchanging potential vorticity content in the down-gradient sense, thus, providing a nonlinear physical mechanism for the dipole destruction. In particular, we highlight the fundamental importance of the west-east asymmetry of the normal mode for destruction to be realized. In summary, we consider this work to be a foundational demonstration of useful methodology for future studies of dynamics and stability of isolated vortices without simplifying spatial symmetries, such as ubiquitous vortices in geophysical fluids.
ISSN:0167-2789
1872-8022
DOI:10.1016/j.physd.2024.134068