Loading…

Dynamic sensor data segmentation for real-time knowledge-driven activity recognition

Approaches and algorithms for activity recognition have recently made substantial progress due to advancements in pervasive and mobile computing, smart environments and ambient assisted living. Nevertheless, it is still difficult to achieve real-time continuous activity recognition as sensor data se...

Full description

Saved in:
Bibliographic Details
Published in:Pervasive and mobile computing 2014-02, Vol.10, p.155-172
Main Authors: Okeyo, George, Chen, Liming, Wang, Hui, Sterritt, Roy
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Approaches and algorithms for activity recognition have recently made substantial progress due to advancements in pervasive and mobile computing, smart environments and ambient assisted living. Nevertheless, it is still difficult to achieve real-time continuous activity recognition as sensor data segmentation remains a challenge. This paper presents a novel approach to real-time sensor data segmentation for continuous activity recognition. Central to the approach is a dynamic segmentation model, based on the notion of varied time windows, which can shrink and expand the segmentation window size by using temporal information of sensor data and activities as well as the state of activity recognition. The paper first analyzes the characteristics of activities of daily living from which the segmentation model that is applicable to a wide range of activity recognition scenarios is motivated and developed. It then describes the working mechanism and relevant algorithms of the model in the context of knowledge-driven activity recognition based on ontologies. The presented approach has been implemented in a prototype system and evaluated in a number of experiments. Results have shown average recognition accuracy above 83% in all experiments for real time activity recognition, which proves the approach and the underlying model.
ISSN:1574-1192
1873-1589
DOI:10.1016/j.pmcj.2012.11.004