Loading…

Unlocking the potential of Streptomyces species as promising biological control agents against phytonematodes

Plant-parasitic nematodes (PPN) pose a significant threat to agricultural productivity by causing extensive damage to various crops worldwide. Their complex life cycle and ability to persist in soils make nematode management difficult. Chemical control strategies are emerging as effective but often...

Full description

Saved in:
Bibliographic Details
Published in:Physiological and molecular plant pathology 2024-11, Vol.134, p.102465, Article 102465
Main Authors: Mani, Janani, Kandasamy, Devrajan, Vendan, R. Thamizh, Sankarasubramanian, Harish, Mannu, Jayakanthan, Nagachandrabose, Seenivasan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Plant-parasitic nematodes (PPN) pose a significant threat to agricultural productivity by causing extensive damage to various crops worldwide. Their complex life cycle and ability to persist in soils make nematode management difficult. Chemical control strategies are emerging as effective but often result in environmental and ecological risks. Biocontrol agents offer a promising alternative with the desired level of reduction in nematode populations without harming non-target organisms. Among the nematode antagonists, Streptomyces spp. is an effective candidate with their ability to produce secondary metabolites that exhibit potent nematicidal properties. Streptomyces avermitilis is the one species that has been completely exploited for nematode and insect management. This review highlights the role of Streptomyces spp. other than S. avermitilis in phytonematode management. Few Streptomyces spp. such as S. yatensis, S. pactum, S. rochei, S. rubrogriseus, S. lincolnensis, S. hygroscopicus, S. antibioticus strain M7, S. albogriseolus ND41 and S. fimicarius D153 are reported to have nematode control potential. Arenimycin, carboxamycin, fervenulin, hygromycin, and lincomycin are some of the Streptomyces-derived compounds that proved to have nematicide potential. Streptomyces spp. also acts as an elicitor of plant defense against nematode intruders. They evinced endophytic potential, plant growth promotion mechanism, compatible nature with other antagonists, and safe to non-target organisms. This current review also highlights the direct and indirect mechanisms by which they control nematodes, another beneficial role in plants, and strategies to upgrade them as commercial products in future thrust areas. [Display omitted] •Plant-parasitic nematodes wreak havoc on crops globally, endangering agricultural productivity.•The resilient and complex life cycle of nematodes demands innovative and effective control strategies.•Streptomyces spp., offer an eco-friendly alternative with minimal harm to non-target organisms.•Streptomyces provide an eco-friendly solution to nematode management by targeting pests without harming beneficial organisms.•Streptomyces with their potent nematicidal compounds, plant-boosting abilities hold promise for future commercial products.
ISSN:0885-5765
DOI:10.1016/j.pmpp.2024.102465