Loading…
Flame synthesis of superparamagnetic Fe/Nb nanocomposites for biomedical applications
Iron/niobium nanocomposite particles are produced using the sodium flame and encapsulation (SFE) process. Ferrocene is added to the vapor-phase metal halide/sodium reaction to produce metallic iron particles encapsulated in niobium. To accomplish this, the ferrocene is combined with niobium chloride...
Saved in:
Published in: | Proceedings of the Combustion Institute 2009, Vol.32 (2), p.1871-1877 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Iron/niobium nanocomposite particles are produced using the sodium flame and encapsulation (SFE) process. Ferrocene is added to the vapor-phase metal halide/sodium reaction to produce metallic iron particles encapsulated in niobium. To accomplish this, the ferrocene is combined with niobium chloride vapor and this mixture is injected as a turbulent jet into a stream of sodium vapor. The ferrocene is expected to decompose upstream of the flame to form iron particles, which pass through the niobium chloride-sodium reaction zone wherein they are encapsulated in niobium. The salt byproduct then encapsulates these particles, preventing oxidation. The as-produced Fe/Nb particles were found to contain Fe particles that are less than ∼15
nm in diameter and are superparamagnetic with a coercivity of 50
Oe and a saturation magnetization of over 200
emu/g of Fe. In addition to possessing a strong magnetic response and small remnant magnetization, the iron/niobium composite particles are expected to be biocompatible and X-ray opaque. Consequently, these materials hold promise for magnetic navigation in biomedical applications. |
---|---|
ISSN: | 1540-7489 1873-2704 |
DOI: | 10.1016/j.proci.2008.06.169 |