Loading…
Emerging trends in numerical simulations of combustion systems
Numerical simulations have played a vital role in the design of modern combustion systems. Over the last two decades, the focus of research has been on the development of the large eddy simulation (LES) approach, which leveraged the vast increase in computing power to dramatically improve predictive...
Saved in:
Published in: | Proceedings of the Combustion Institute 2019, Vol.37 (2), p.2073-2089 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Numerical simulations have played a vital role in the design of modern combustion systems. Over the last two decades, the focus of research has been on the development of the large eddy simulation (LES) approach, which leveraged the vast increase in computing power to dramatically improve predictive accuracy. Even with the anticipated increase in supercomputing capabilities, the use of LES in design is limited by its high computational cost. Moreover, to aid decision making, such LES computations have to be augmented to estimate underlying uncertainties in simulation components. At the same time, other changes are happening across industries that build or use combustion devices. While efficiency and emissions reduction are still the primary design objectives, reducing cost of operation by optimizing maintenance and repair is becoming an important segment of the enterprise. This latter quest is aided by the digitization of combustors, which allows collection and storage of operational data from a host of sensors over a fleet of devices. Moreover, several levels of computing including low-power hardware present on board the combustion systems are becoming available. Such large data sets create unique opportunities for design and maintenance if appropriate numerical tools are made available. As LES revolutionized computing-guided design by leveraging supercomputing, a new generation of numerical approaches is needed to utilize this vast amount of data and the varied nature of computing hardware. In this article, a review of emerging computational approaches for this heterogeneous data-driven environment is provided. A case is made that new but unconventional opportunities for physics-based combustion modeling exist in this realm. |
---|---|
ISSN: | 1540-7489 1873-2704 |
DOI: | 10.1016/j.proci.2018.07.121 |