Loading…

The CEL Method as an Alternative to the Current Modelling Approaches for Ti6Al4V Orthogonal Cutting Simulation

The finite element approach is often adopted to study the machining process. The Lagrangian and Eulerian formulations or even Arbitrary Eulerian-Lagrangian (ALE), one of their combinations, are the most employed in the current literature; each having their pros and cons. One of the most challenging...

Full description

Saved in:
Bibliographic Details
Published in:Procedia CIRP 2017, Vol.58, p.245-250
Main Authors: Ducobu, F., Arrazola, P.-J., Rivière-Lorphèvre, E., Zarate, G. Ortiz de, Madariaga, A., Filippi, E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The finite element approach is often adopted to study the machining process. The Lagrangian and Eulerian formulations or even Arbitrary Eulerian-Lagrangian (ALE), one of their combinations, are the most employed in the current literature; each having their pros and cons. One of the most challenging issue in finite element modelling is the large strains during the cutting process that induce high deformation levels in the elements of the mesh. Remeshing contributes to decreasing mesh deformation but the criterion adopted to control it influences the results. The Coupled Eulerian-Lagrangian (CEL) method proposes to combine the Lagrangian and Eulerian formalisms without any element deformation problem. This paper studies its implementation in Ti6Al4V orthogonal cutting. The results are then compared to an experimental reference, as well as more standard models: an ALE model developed with Abaqus, an implicit Lagrangian model developed with Deform and an explicit Lagrangian model developed with AdvantEdge. The comparison is mainly based on the cutting forces and the chip morphology. It shows that the CEL formulation is a competitive alternative to the more standard models.
ISSN:2212-8271
2212-8271
DOI:10.1016/j.procir.2017.03.188