Loading…
Automobile Maintenance Prediction Using Deep Learning with GIS Data
Predictive maintenance is of importance to various industries. Fleet management can be beneficial if the time-between-failures (TBF) of an automobile can be predicted. Conventionally, the prediction models in predictive maintenance are established using historical maintenance data or sensor data. In...
Saved in:
Published in: | Procedia CIRP 2019, Vol.81, p.447-452 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Predictive maintenance is of importance to various industries. Fleet management can be beneficial if the time-between-failures (TBF) of an automobile can be predicted. Conventionally, the prediction models in predictive maintenance are established using historical maintenance data or sensor data. In the era of big data, the availability of data has been significantly increased. This study aims to introduce geographic information systems data into TBF modelling and research their impact on automobile TBF using deep learning. An experimental study based on real-world maintenance data reveals that the performance of deep neural network improved with the help of GIS data. |
---|---|
ISSN: | 2212-8271 2212-8271 |
DOI: | 10.1016/j.procir.2019.03.077 |