Loading…
Parallel Approach for Finding Co-location Pattern – A Map Reduce Framework
Spatial co-location pattern mining is a sub field of data mining which is used to discover interesting patterns which are expressed as co-location rules. The objects that are frequently located in certain region are expressed as spatial co-locations. It presents a challenge for finding co-location p...
Saved in:
Published in: | Procedia computer science 2016, Vol.89, p.341-348 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Spatial co-location pattern mining is a sub field of data mining which is used to discover interesting patterns which are expressed as co-location rules. The objects that are frequently located in certain region are expressed as spatial co-locations. It presents a challenge for finding co-location patterns as the traditional data is considered discrete whereas the spatial objects are embedded in a continuous space. For this a join-less approach is proposed, but as the data size increases, a large amount of computation time is devoted to find co-location rules as the approach is purely sequential. We propose a parallelized join-less approach which finds the spatial neighbor relationship in order to identify co-location instances and co-location rules. The proposed work decreases the computation time drastically as it uses a Map-Reduce framework. This paper presents precise and completeness of the new approach. Finally, an experimental evaluations using synthetic data sets show the algorithm is computationally more efficient. |
---|---|
ISSN: | 1877-0509 1877-0509 |
DOI: | 10.1016/j.procs.2016.06.081 |