Loading…
Improved diagnostic accuracy for myocardial perfusion imaging using artificial neural networks on different input variables including clinical and quantification data
AbstractObjectiveDiagnostic accuracy of myocardial perfusion imaging (MPI) is not optimal to predict the result of angiography. The current study aimed at investigating the application of artificial neural network (ANN) to integrate the clinical data with the result and quantification of MPI. Method...
Saved in:
Published in: | Revista Española de medicina nuclear e imagen molecular (English ed.) 2019-09, Vol.38 (5), p.275-279 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | AbstractObjectiveDiagnostic accuracy of myocardial perfusion imaging (MPI) is not optimal to predict the result of angiography. The current study aimed at investigating the application of artificial neural network (ANN) to integrate the clinical data with the result and quantification of MPI. MethodsOut of 923 patients with MPI, 93 who underwent angiography were recruited. The clinical data including the cardiac risk factors were collected and the results of MPI and coronary angiography were recorded. The quantification of MPI polar plots (i.e. the counts of 20 segments of each stress and rest polar plots) and the Gensini score of angiographies were calculated. Feed-forward ANN was designed integrating clinical and quantification data to predict the result of angiography (normal vs. abnormal), non-obstructive or obstructive coronary artery disease (CAD), and Gensini score (≥10 and |
---|---|
ISSN: | 2253-8089 2253-8089 |
DOI: | 10.1016/j.remnie.2019.04.005 |