Loading…

Controlled synthesis of MnS/ZnS hybrid material with different morphology as efficient water and urea electrolysis catalyst

Fabrication of earth-abundant, environmentally friendly, high-efficiency and robust bifunctional electrodes for generating hydrogen has become increasingly appealing. Herein, a series of MnS/ZnS nanohybrids grown directly on Ni foams was firstly explored at different temperatures by one-step hydroth...

Full description

Saved in:
Bibliographic Details
Published in:Renewable energy 2022-06, Vol.193, p.715-724
Main Authors: Chen, Nannan, Du, Xiaoqiang, Zhang, Xiaoshuang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Fabrication of earth-abundant, environmentally friendly, high-efficiency and robust bifunctional electrodes for generating hydrogen has become increasingly appealing. Herein, a series of MnS/ZnS nanohybrids grown directly on Ni foams was firstly explored at different temperatures by one-step hydrothermal method for water and urea electrolysis. When it was used as the hydrogen evolution reaction and oxygen evolution reactions catalyst, MZS/NF-180 demonstrates a small overpotentials of 223 mV and 357 mV at a considerable current density of 100 mA cm−2, respectively. Moreover, adapting it as cathode and anode electrode for water splitting in 1.0 M KOH, a low cell voltage of 1.61 V is required for delivering 10 mA cm−2 and cycling lifespan is attained for more than 12 h. Additionally, the electrochemical urea oxidation results demonstrates that MZS/NF-180 demands just cell voltage of 1.37 V (vs RHE) to achieve 100 mA cm−2 in 1 M KOH with 0.5 M urea. And urea-assisted electrolysis cell displayed a low potential of 1.51 V at 10 mA cm−2 and a good stability for a 12 h test. Besides, the theoretical calculations are also conducted to explore the detail of electrocatalyst activity in water splitting. In this research, a series of MZS/NF hybrids at different temperatures is successfully synthesized by a simple one-step hydrothermal method and served as an efficient water and urea electrolysis catalyst. [Display omitted]
ISSN:0960-1481
1879-0682
DOI:10.1016/j.renene.2022.05.040