Loading…
A new approach to analyse from monitored data the performance, matching capability and grid usage of large Rooftop Photovoltaic systems. Case of study: Photovoltaic system of 1.05 MW installed at the campus of University of Jaén
Rooftop photovoltaic installations highlight their potential to meet a significant portion of urban electricity demand. These systems range from a few kW in residential areas to hundreds of kW in large Rooftop PV systems in commercial and industrial settings. The latter, which may include several in...
Saved in:
Published in: | Renewable energy 2025-02, Vol.239, p.121947, Article 121947 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Rooftop photovoltaic installations highlight their potential to meet a significant portion of urban electricity demand. These systems range from a few kW in residential areas to hundreds of kW in large Rooftop PV systems in commercial and industrial settings. The latter, which may include several inverters or arrays with different orientations and inclinations, require a proper analysis to assess the potential of this technology and to ensure the design objectives. This paper presents a methodology for analysing from monitored data large Rooftop PV systems, focusing on performance, self-consumption and grid usage. The approach is scalable, applicable at the inverter, individual Rooftop PV and global system levels. New key parameters defined include weighted system irradiation (HI,weighted) and weighted system reference yield (Yr,weighted), which account for different array orientations and inclinations. The methodology is validated using a 1.05 MW system at the University of Jaén with monitored data over a year. Results indicate subsystem and system PR values above 0.83 and a system Capacity Factor of 0.19, confirming a proper performance. Annual self-consumption and self-sufficiency indices of 97.5 % and 17.7 %, respectively, and a solar hour self-sufficiency of 27.7 % reveal minimal energy export and substantial potential to meet the university’s electricity demand. |
---|---|
ISSN: | 0960-1481 |
DOI: | 10.1016/j.renene.2024.121947 |