Loading…

Inner Mongolian grassland plant phenological changes and their climatic drivers

Global warming is widely believed to extend the length of plant growing season (LOS) through advancing the start (SOS) and delaying the end (EOS) of plant growing season. However, divergent directions of phenological changes under current climate warming have been frequently reported but poorly unde...

Full description

Saved in:
Bibliographic Details
Published in:The Science of the total environment 2019-09, Vol.683, p.1-8
Main Authors: Wang, Guocheng, Huang, Yao, Wei, Yurong, Zhang, Wen, Li, Tingting, Zhang, Qing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Global warming is widely believed to extend the length of plant growing season (LOS) through advancing the start (SOS) and delaying the end (EOS) of plant growing season. However, divergent directions of phenological changes under current climate warming have been frequently reported but poorly understood. Here we collate the long-term filed phenological and climatic records at 8 sites in Inner Mongolian grassland to assess how climate changes regulate the phenological variations with divergent directions and magnitudes in this region. We found that the spring climatic changes (e.g., changes in air temperature and precipitation during March and April) correlate well with variations in SOS. However, our in situ observations show divergent changes in SOS across space, which can be attributed to the generally insignificant changes of climates during the preseasons of SOS. The climate warming prior to the end of plant growing season (EOS) was generally significant at most sites. Nevertheless, the effects of such warming on changes in EOS were possibly overshadowed by the impacts of precipitation in this arid/semi-arid region. As a result, the temporal variations in EOS distribute divergent directions and magnitudes across space and species. Using climate attributes during the preseason of EOS alone can hardly explain changes in EOS. Alternatively, by introducing changes in SOS as an additional driving factor, variations in EOS can be well represented. We therefore infer that plant phenologies can divergently response to current global warming (depending on the seasonal patterns of warming). Moreover, other influential factors such as precipitation and the interactions between the timings of different phenological stages are also needed in predicting the phenological dynamics. [Display omitted] •Plant phenology varies differently in directions and magnitudes in Inner Mongolia.•Spring phenology is substantially determined by the preseason climate changes.•Date of plant senescence is co-regulated by preseason climates and spring phenology.
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2019.05.125