Loading…

Triangular array limits for continuous time random walks

A continuous time random walk (CTRW) is a random walk subordinated to a renewal process, used in physics to model anomalous diffusion. Transition densities of CTRW scaling limits solve fractional diffusion equations. This paper develops more general limit theorems, based on triangular arrays, for se...

Full description

Saved in:
Bibliographic Details
Published in:Stochastic processes and their applications 2008-09, Vol.118 (9), p.1606-1633
Main Authors: Meerschaert, Mark M., Scheffler, Hans-Peter
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A continuous time random walk (CTRW) is a random walk subordinated to a renewal process, used in physics to model anomalous diffusion. Transition densities of CTRW scaling limits solve fractional diffusion equations. This paper develops more general limit theorems, based on triangular arrays, for sequences of CTRW processes. The array elements consist of random vectors that incorporate both the random walk jump variable and the waiting time preceding that jump. The CTRW limit process consists of a vector-valued Lévy process whose time parameter is replaced by the hitting time process of a real-valued nondecreasing Lévy process (subordinator). We provide a formula for the distribution of the CTRW limit process and show that their densities solve abstract space–time diffusion equations. Applications to finance are discussed, and a density formula for the hitting time of any strictly increasing subordinator is developed.
ISSN:0304-4149
1879-209X
DOI:10.1016/j.spa.2007.10.005