Loading…
Posterior contraction rates for support boundary recovery
Given a sample of a Poisson point process with intensity λf(x,y)=n1(f(x)≤y), we study recovery of the boundary function f from a nonparametric Bayes perspective. Because of the irregularity of this model, the analysis is non-standard. We establish a general result for the posterior contraction rate...
Saved in:
Published in: | Stochastic processes and their applications 2020-11, Vol.130 (11), p.6638-6656 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Given a sample of a Poisson point process with intensity λf(x,y)=n1(f(x)≤y), we study recovery of the boundary function f from a nonparametric Bayes perspective. Because of the irregularity of this model, the analysis is non-standard. We establish a general result for the posterior contraction rate with respect to the L1-norm based on entropy and one-sided small probability bounds. From this, specific posterior contraction results are derived for Gaussian process priors and priors based on random wavelet series. |
---|---|
ISSN: | 0304-4149 1879-209X |
DOI: | 10.1016/j.spa.2020.06.005 |