Loading…
Beta Laguerre processes in a high temperature regime
Beta Laguerre processes which are generalizations of the eigenvalue process of Wishart/Laguerre processes can be defined as the squares of radial Dunkl processes of type B. In this paper, we study the limiting behavior of their empirical measure processes. By the moment method, we show the convergen...
Saved in:
Published in: | Stochastic processes and their applications 2021-06, Vol.136, p.192-205 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Beta Laguerre processes which are generalizations of the eigenvalue process of Wishart/Laguerre processes can be defined as the squares of radial Dunkl processes of type B. In this paper, we study the limiting behavior of their empirical measure processes. By the moment method, we show the convergence to a limit in a high temperature regime, a regime where βN→const∈(0,∞), where β is the inverse temperature parameter and N is the system size. This is a dynamic version of a recent result on the convergence of the empirical measures of beta Laguerre ensembles in the same regime. |
---|---|
ISSN: | 0304-4149 1879-209X |
DOI: | 10.1016/j.spa.2021.03.002 |