Loading…
A sharp maximal inequality for one-dimensional Dunkl martingales
Let X=(Xt)t≥0 be a one-dimensional Dunkl process of parameter k≥0, starting from 0. For any p≥1, we find the least constant Cp,k∈(0,∞] in the Doob-type inequality E(sup0≤t≤τXτ)p≤Cp,kE∣Xτ∣p where τ runs over all p/2-integrable stopping times of X. The proof exploits optimal stopping techniques....
Saved in:
Published in: | Statistics & probability letters 2015-10, Vol.105, p.114-119 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let X=(Xt)t≥0 be a one-dimensional Dunkl process of parameter k≥0, starting from 0. For any p≥1, we find the least constant Cp,k∈(0,∞] in the Doob-type inequality E(sup0≤t≤τXτ)p≤Cp,kE∣Xτ∣p where τ runs over all p/2-integrable stopping times of X. The proof exploits optimal stopping techniques. |
---|---|
ISSN: | 0167-7152 1879-2103 |
DOI: | 10.1016/j.spl.2015.06.008 |