Loading…
Reformulating the direct convolution for high-performance deep learning inference on ARM processors
We present two high-performance implementations of the convolution operator via the direct algorithm that outperform the so-called lowering approach based on the im2col transform plus the gemm kernel on an ARMv8-based processor. One of our methods presents the additional advantage of zero-memory ove...
Saved in:
Published in: | Journal of systems architecture 2023-02, Vol.135, p.102806, Article 102806 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present two high-performance implementations of the convolution operator via the direct algorithm that outperform the so-called lowering approach based on the im2col transform plus the gemm kernel on an ARMv8-based processor. One of our methods presents the additional advantage of zero-memory overhead while the other employs an additional yet rather moderate workspace, substantially smaller than that required by the im2col+gemm solution. In contrast with a previous implementation of a similar zero-memory overhead direct convolution, this work exhibits the key advantage of preserving the conventional NHWC data layout for the input/output activations of the convolution layers. |
---|---|
ISSN: | 1383-7621 1873-6165 |
DOI: | 10.1016/j.sysarc.2022.102806 |