Loading…
Stability of positive linear switched systems on ordered Banach spaces
We provide sufficient criteria for the stability of positive linear switched systems on ordered Banach spaces. The switched systems can be generated by finitely many bounded operators in infinite-dimensional spaces with a general class of order-inducing cones. In the discrete-time case, we assume an...
Saved in:
Published in: | Systems & control letters 2015-01, Vol.75, p.14-19 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We provide sufficient criteria for the stability of positive linear switched systems on ordered Banach spaces. The switched systems can be generated by finitely many bounded operators in infinite-dimensional spaces with a general class of order-inducing cones. In the discrete-time case, we assume an appropriate interior point of the cone, whereas in the continuous-time case an appropriate interior point of the dual cone is sufficient for stability. This is an extension of the concept of linear Lyapunov functions for positive systems to the setting of infinite-dimensional partially ordered spaces. We illustrate our results with examples. |
---|---|
ISSN: | 0167-6911 1872-7956 |
DOI: | 10.1016/j.sysconle.2014.10.004 |