Loading…
On the parameterized complexity of the geodesic hull number
Several recent papers obtained complexity results regarding the geodesic hull number hngd(G) of a graph G. In this paper, we prove that determining whether hngd(G)≤k is W[2]-hard parameterized by k in diameter-two graphs and is W[1]-hard parameterized by tw+k, where tw is the treewidth of G. Despite...
Saved in:
Published in: | Theoretical computer science 2019-10, Vol.791, p.10-27 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Several recent papers obtained complexity results regarding the geodesic hull number hngd(G) of a graph G. In this paper, we prove that determining whether hngd(G)≤k is W[2]-hard parameterized by k in diameter-two graphs and is W[1]-hard parameterized by tw+k, where tw is the treewidth of G. Despite this, for graphs with bounded treewidth tw, we prove that hngd(G) is computable in polynomial time O((tw+2)tw+5n2tw+5). |
---|---|
ISSN: | 0304-3975 1879-2294 |
DOI: | 10.1016/j.tcs.2019.05.005 |