Loading…
Sprague-Grundy function of matroids and related hypergraphs
We consider a generalization of the classical game of Nim called hypergraph Nim. Given a hypergraph H on the ground set V={1,…,n} of n piles of stones, two players alternate in choosing a hyperedge H∈H and strictly decreasing all piles i∈H. The player who makes the last move is the winner. In this p...
Saved in:
Published in: | Theoretical computer science 2019-12, Vol.799, p.40-58 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider a generalization of the classical game of Nim called hypergraph Nim. Given a hypergraph H on the ground set V={1,…,n} of n piles of stones, two players alternate in choosing a hyperedge H∈H and strictly decreasing all piles i∈H. The player who makes the last move is the winner. In this paper we give an explicit formula that describes the Sprague-Grundy function of hypergraph Nim for several classes of hypergraphs. In particular we characterize all 2-uniform hypergraphs (that is graphs) and all matroids for which the formula works. We show that all self-dual matroids are included in this class. |
---|---|
ISSN: | 0304-3975 1879-2294 |
DOI: | 10.1016/j.tcs.2019.09.041 |