Loading…
Paracompactness and the Lindelöf property in countable products
In this paper, we prove the following: Let Y be a perfect paracompact (hereditarily Lindelöf) space and {X n: n∈ω} be a countable collection of Čech-scattered paracompact (Lindelöf) spaces, then the product Y×∏ n∈ ω X n is paracompact (Lindelöf).
Saved in:
Published in: | Topology and its applications 2005, Vol.146, p.57-66 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we prove the following: Let
Y be a perfect paracompact (hereditarily Lindelöf) space and
{X
n:
n∈ω}
be a countable collection of Čech-scattered paracompact (Lindelöf) spaces, then the product
Y×∏
n∈
ω
X
n
is paracompact (Lindelöf). |
---|---|
ISSN: | 0166-8641 1879-3207 |
DOI: | 10.1016/j.topol.2002.12.002 |