Loading…

Paracompactness and the Lindelöf property in countable products

In this paper, we prove the following: Let Y be a perfect paracompact (hereditarily Lindelöf) space and {X n: n∈ω} be a countable collection of Čech-scattered paracompact (Lindelöf) spaces, then the product Y×∏ n∈ ω X n is paracompact (Lindelöf).

Saved in:
Bibliographic Details
Published in:Topology and its applications 2005, Vol.146, p.57-66
Main Authors: Aoki, Eriko, Mori, Naoko, Tanaka, Hidenori
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we prove the following: Let Y be a perfect paracompact (hereditarily Lindelöf) space and {X n: n∈ω} be a countable collection of Čech-scattered paracompact (Lindelöf) spaces, then the product Y×∏ n∈ ω X n is paracompact (Lindelöf).
ISSN:0166-8641
1879-3207
DOI:10.1016/j.topol.2002.12.002