Loading…
On the fundamental groups of one-dimensional spaces
We study here a number of questions raised by examining the fundamental groups of complicated one-dimensional spaces. The first half of the paper considers one-dimensional spaces as such. The second half proves related results for general spaces that are needed in the first half but have independent...
Saved in:
Published in: | Topology and its applications 2006-08, Vol.153 (14), p.2648-2672 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study here a number of questions raised by examining the fundamental groups of complicated one-dimensional spaces. The first half of the paper considers one-dimensional spaces as such. The second half proves related results for general spaces that are needed in the first half but have independent interest. Among the results we prove are the theorem that the fundamental group of a separable, connected, locally path connected, one-dimensional metric space is free if and only if it is countable if and only if the space has a universal cover and the theorem that the fundamental group of a compact, one-dimensional, connected metric space embeds in an inverse limit of finitely generated free groups and is shape injective. |
---|---|
ISSN: | 0166-8641 1879-3207 |
DOI: | 10.1016/j.topol.2005.10.008 |