Loading…

Stable extendibility of vector bundles over real projective spaces

Let F be either the real number field R or the complex number field C and RPn the real projective space of dimension n. Theorems A and C in Hemmi and Kobayashi (2008) [2] give necessary and sufficient conditions for a given F-vector bundle over RPn to be stably extendible to RPm for every m⩾n. In th...

Full description

Saved in:
Bibliographic Details
Published in:Topology and its applications 2013-11, Vol.160 (17), p.2170-2174
Main Authors: Hemmi, Yutaka, Kobayashi, Teiichi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Let F be either the real number field R or the complex number field C and RPn the real projective space of dimension n. Theorems A and C in Hemmi and Kobayashi (2008) [2] give necessary and sufficient conditions for a given F-vector bundle over RPn to be stably extendible to RPm for every m⩾n. In this paper, we simplify the theorems and apply them to the tangent bundle of RPn, its complexification, the normal bundle associated to an immersion of RPn in Rn+r(r>0), and its complexification. Our result for the normal bundle is a generalization of Theorem A in Kobayashi et al. (2000) [8] and that for its complexification is a generalization of Theorem 1 in Kobayashi and Yoshida (2003) [5].
ISSN:0166-8641
1879-3207
DOI:10.1016/j.topol.2013.09.001