Loading…
Stable extendibility of vector bundles over real projective spaces
Let F be either the real number field R or the complex number field C and RPn the real projective space of dimension n. Theorems A and C in Hemmi and Kobayashi (2008) [2] give necessary and sufficient conditions for a given F-vector bundle over RPn to be stably extendible to RPm for every m⩾n. In th...
Saved in:
Published in: | Topology and its applications 2013-11, Vol.160 (17), p.2170-2174 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let F be either the real number field R or the complex number field C and RPn the real projective space of dimension n. Theorems A and C in Hemmi and Kobayashi (2008) [2] give necessary and sufficient conditions for a given F-vector bundle over RPn to be stably extendible to RPm for every m⩾n. In this paper, we simplify the theorems and apply them to the tangent bundle of RPn, its complexification, the normal bundle associated to an immersion of RPn in Rn+r(r>0), and its complexification. Our result for the normal bundle is a generalization of Theorem A in Kobayashi et al. (2000) [8] and that for its complexification is a generalization of Theorem 1 in Kobayashi and Yoshida (2003) [5]. |
---|---|
ISSN: | 0166-8641 1879-3207 |
DOI: | 10.1016/j.topol.2013.09.001 |