Loading…
On a nontrivial knot projection under (1, 3) homotopy
In 2001, Östlund formulated the question: are Reidemeister moves of types 1 and 3 sufficient to describe a homotopy from any generic immersion of a circle in a two-dimensional plane to an embedding of the circle? The positive answer to this question was treated as a conjecture (Östlund conjecture)....
Saved in:
Published in: | Topology and its applications 2016-09, Vol.210, p.22-28 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In 2001, Östlund formulated the question: are Reidemeister moves of types 1 and 3 sufficient to describe a homotopy from any generic immersion of a circle in a two-dimensional plane to an embedding of the circle? The positive answer to this question was treated as a conjecture (Östlund conjecture). In 2014, Hagge and Yazinski disproved the conjecture by showing the first counterexample with a minimal crossing number of 16. This example is naturally extended to counterexamples with given even minimal crossing numbers more than 14. This paper obtains the first counterexample with a minimal crossing number of 15. This example is naturally extended to counterexamples with given odd minimal crossing numbers more than 13. |
---|---|
ISSN: | 0166-8641 1879-3207 |
DOI: | 10.1016/j.topol.2016.07.008 |