Loading…

Compactifications and remainders of monotonically normal spaces

Monotonically normal spaces have many strong properties, but poor preservation properties. For example, there are locally compact, monotonically normal spaces whose one-point compactifications are not monotonically normal, and hence have no monotonically normal compactifications. We give two classes...

Full description

Saved in:
Bibliographic Details
Published in:Topology and its applications 2016-11, Vol.213, p.80-91
Main Authors: Junnila, Heikki, Nyikos, Peter
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Monotonically normal spaces have many strong properties, but poor preservation properties. For example, there are locally compact, monotonically normal spaces whose one-point compactifications are not monotonically normal, and hence have no monotonically normal compactifications. We give two classes of such spaces, and give a pair of necessary conditions for spaces of pointwise countable type to have, respectively, compactifications or remainders that are monotonically normal. We show that a monotonically normal, locally compact space has a monotonically normal compactification if it is either locally connected or countably compact, and show that this latter condition cannot be weakened to “σ-countably compact.”
ISSN:0166-8641
1879-3207
DOI:10.1016/j.topol.2016.08.015