Loading…

Large strongly anti-Urysohn spaces exist

As defined in [3], a Hausdorff space is strongly anti-Urysohn (in short: SAU) if it has at least two non-isolated points and any two infinite closed subsets of it intersect. Our main result answers the two main questions of [3] by providing a ZFC construction of a locally countable SAU space of card...

Full description

Saved in:
Bibliographic Details
Published in:Topology and its applications 2023-01, Vol.323, p.108288, Article 108288
Main Authors: Juhász, István, Shelah, Saharon, Soukup, Lajos, Szentmiklóssy, Zoltán
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:As defined in [3], a Hausdorff space is strongly anti-Urysohn (in short: SAU) if it has at least two non-isolated points and any two infinite closed subsets of it intersect. Our main result answers the two main questions of [3] by providing a ZFC construction of a locally countable SAU space of cardinality 2c. The construction hinges on the existence of 2c weak P-points in ω⁎, a very deep result of Ken Kunen. It remains open if SAU spaces of cardinality >2c could exist, while it was shown in [3] that 22c is an upper bound. Also, we do not know if crowded SAU spaces, i.e. ones without any isolated points, exist in ZFC but we obtained the following consistency results concerning such spaces.(1)It is consistent that c is as large as you wish and there is a locally countable and crowded SAU space of cardinality c+.(2)It is consistent that both c and 2c are as large as you wish and there is a crowded SAU space of cardinality 2c.(3)For any uncountable cardinal κ the following statements are equivalent:(i)κ=cof([κ]ω,⊆).(ii)There is a locally countable and crowded SAU space of size κ in the generic extension obtained by adding κ Cohen reals.(iii)There is a locally countable and countably compact T1-space of size κ in some CCC generic extension.
ISSN:0166-8641
1879-3207
DOI:10.1016/j.topol.2022.108288