Loading…

Contribution of time-series data cubes to classify urban vegetation types by remote sensing

Mapping urban vegetation types is important for urban planning and assessing environmental justice. Nowadays, despite data cubes projects are providing Analysis Ready Data to facilitate time-series analysis, we did not found studies employing these data for improving urban vegetation mapping. By rel...

Full description

Saved in:
Bibliographic Details
Published in:Urban forestry & urban greening 2023-01, Vol.79, p.127817, Article 127817
Main Authors: Adorno, Bruno Vargas, Körting, Thales Sehn, Amaral, Silvana
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Mapping urban vegetation types is important for urban planning and assessing environmental justice. Nowadays, despite data cubes projects are providing Analysis Ready Data to facilitate time-series analysis, we did not found studies employing these data for improving urban vegetation mapping. By relying solely on open data and software, this work proposes and evaluates the integration of time-series data cubes in a hybrid image classification method to map the intra-urban space, differentiating Tree cover and Herb-shrub. The urban area of Goiânia, Goiás, Brazil, is the study area. The hybrid method combined object-based classification of a pan-sharpened CBERS-4A WPM image (spatial resolution of 2 m) with the pixel-based classification of Sentinel-2 MSI time-series data cubes (10 m). Both approaches used the Random Forest algorithm. Objects from the CBERS-4A segmentation composed the spatial unit of analysis and the class assignment depended on the Sentinel-2 time-series urban land cover probabilities. Based on both Maps probabilities, Shannon entropy was calculated to attribute the final urban land cover to the objects. Urban land cover probabilities presented similar spatial distribution patterns for both classification approaches. Regarding the thematic maps, the Herb-shrub cover area was 35% higher in Sentinel-2 time-series classification than in GEOBIA classification, but Tree cover was 21% lower. In general, 75% of the study area was equally classified by the initial approaches. However, for 9% of the remaining area, the hybrid classification improved vegetation classes accuracies by 35%, contributing to the vegetation covers identification. Thus, this study contributes to methodological procedures for urban land cover study and demonstrates that hybrid maps based on open data are effective to reduce classification mistakes, allowing more accurate monitoring, planning, and designing of different urban vegetation types. Future research efforts should focus on scale compatibility between data of different spatial resolutions and expand the use of data cubes to integrate time-series information into the GEOBIA classification. [Display omitted] •Combining GEOBIA and per-pixel time series approaches improves urban land cover classification.•10 m spatial resolution data cubes are efficient for mapping urban vegetation types.•Data cubes reduce misclassification between Herb-shrub and Soil or Burned areas.
ISSN:1618-8667
1610-8167
DOI:10.1016/j.ufug.2022.127817